Land Use/cover Classification and Rice Mapping Based on Envisat Asar Data

نویسندگان

  • Shaun Quegan
  • Guojin He
  • Mirko Santuari
  • Xiaoqin Wang
  • Qinmin Wang
چکیده

The main objective of this project is to develop and test methodology using ENVISAT ASAR data for agricultural applications, with an emphasis on land use, land cover classification and rice mapping. An optimal pre-processing chain for ASAR data is first constructed to provide input data to the classification steps. Experiments at the Zhangzhou test site, Fujian province, southern China, indicate that rice mapping based on Principal Components Analysis is effective at packing multi-temporal information on rice fields into a dominant component and gives results similar to a rule-based approach. A radial basis function neural network approach provides reasonable accuracies for broad land cover classification, with clear gains in statistical accuracy as more data are added, but without major impacts on the visual quality of the classified images Key word: ENVISAT ASAR data, Agriculture, Land use and land cover classification, Rice mapping, Zhangzhou region, Fujian Province

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Envisat Asar Data for Alpine Land Use Classification

The advantage of ENVISAT ASAR over its predecessors, namely ERS-1 and ERS-2, as a land observation tool resides in its multiple polarization and multi-look angle capabilities. As a radar sensor the ASAR backscattering coefficient is sensitive to the moisture content of the scattering media and its geometrical properties (i.e. size, shape, roughness, and orientation). From the quantitative analy...

متن کامل

K&C Science Report – Phase 1 Synergetic Use of ALOS PALSAR, ENVISAT ASAR and Landsat TM/ETM+ Data for Land Cover and Change Mapping

Interferometric ALOS PALSAR Fine Beam Single/Dual, multi-temporal ENVISAT ASAR Alternating Polarization, and Landsat-5 TM/-7 ETM+ data are used for the generation of land cover and change maps. In synthesis, the product generation foresees two main steps: The first one consists in a rigorous data pre-processing, including interferometric processing (PALSAR), geometric / radiometric calibration ...

متن کامل

Synergetic Use of Envisat-1/ Asar Img / Apg Data and Optical Spot Xs/xi Data for Land Cover and Agricultural Crops Mapping

RESUME The paper presents the results of land cover and crops identification achieved on the basis of the time series of 27 ENVISAT -1/ ASAR images acquired in Image Mode and Alternating Polarization Mode during the 2003 observing campaign for Malbork test site in northern Poland. The results are compared with those obtained from SPOT -4 multitemporal data. High degree of their similarity has b...

متن کامل

Supervised Wishart Classifier for Rice Mapping Using Multi-temporal Envisat Asar Aps Data

For the operational application of multi-temporal ENVISAT ASAR APS data to rice mapping, a complex Wishart distribution based multi-temporal classifier was evaluated in this paper. The classification accuracy of this classifier was quantitatively compared with commonly used classifiers for optical remote sensing image classification including maximum likelihood classifier and minimum euclidean ...

متن کامل

Envisat Asar Polarimatric Data for Soil Moisture Mapping

ENVISAT ASAR Data acquired over four test sites were analyzed for soil moisture mapping using various models. The polarimetric data covers dual polarized HH/VV, HH/HV and single polarized VV in swaths IS2, IS2, IS4, IS5 and IS6. SIR-C Land C-band data were also used for the verification of models. Dubois et al. empirical and linear regression equations were used for soil moisture estimation. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005